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When noise decreases deterministic diffusion

Renate Wackerbauer*
Max-Planck-Institute for Physics of Complex Systems, 01187 Dresden, Germany

~Received 18 August 1998!

Dynamical noise, acting homogeneously in each time step, can enhance the stability of an unstable fixed
point. However, if dynamical noise is added locally in state space, additional clear enhancement can be
achieved, if this restriction is chosen properly. A systematic analysis of the influence of local and global
dynamical noise on the residence time of an unstable state is presented, and optimal parameters for the
stabilizing mechanisms are discussed. As a consequence, it is demonstrated that local dynamical noise can
yield increased localization in deterministic diffusion models.@S1063-651X~99!08203-3#

PACS number~s!: 05.45.2a, 05.40.2a, 05.60.2k
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I. INTRODUCTION

The fact that dynamical noise can enhance the stabilit
an unstable fixed point appears as a somewhat counteri
tive behavior, but is reported in several studies. In the p
ence of a periodic force, noise-enhanced stability is found
the transient dynamics of an overdamped particle in a no
cubic potential@1#, or in a noisy bistable system operating
a strong forcing regime@2,3#. This is discussed as a nois
induced failure of a switch device in the context of stochas
resonance. However, in the absence of a periodic drive,
in systems which exhibit an unstable fixed point witho
forcing, dynamical noise can also enhance the stability
the Lorenz system the switching of a typical trajectory b
tween the two symmetric lobes of the Lorenz attractor can
significantly postponed by dynamical noise@4#. This noise-
induced delay of the decay of an unstable state was
reported recently within a model of overdamped Brown
motion in a potential field@5#. Essential mechanisms for suc
a stabilizing behavior were discussed in detail in the cas
one-dimensional discontinuous maps@6#, and identified as
noise-induced shifts of unstable states resulting in no
induced attractive regions in state space.

All these studies deal with global dynamical noise, e.g
deterministic dynamical system is perturbed by a stocha
process homogeneously in each time step. However, if
namical noise acts only locally in state space, a consider
enhancement of the stability can be achieved, even in c
where there is no enhancement for global noise. For a lin
map on a torus this was mentioned briefly in Ref.@6#, but not
discussed in detail. Thus, in the first part of this paper~Sec.
III !, the influence of dynamical noise on the decay of
unstable fixed point is investigated, and general conditi
are derived to optimize the decrease of instability by lo
noise.

These findings can be transferred directly to the prob
of deterministic diffusion@7–9# ~Sec. IV!, where chaotic de-
terministic dynamics induces a diffusive behavior, which
in contrast to ratchetlike devices, where fluctuations can
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ready induce transport@10#. Deterministic diffusion has been
studied to explain the dynamics of real physical systems
Josephson junctions in the presence of a microwave fi
@11,12#. It is also deeply connected with phenomena as qu
tum dynamical localization@13# and the related Anderso
localization @14#, which have been used to explain a wid
variety of transport or spectroscopic phenomena in the p
ence of~random! disorder@15#. Increasing attention in deter
ministic diffusion is also caused by recent advancement
periodic orbit theory@9# and Lévi flight statistics@12#. For
example, in Ref.@16#, a totally dynamical approach was pre
sented in deriving a Le´vi process which demonstrates a lin
of chaotic dynamical systems and associated random
cesses. Here we show that local noise in state space
clearly delay deterministic diffusion and therefore enhan
localization properties in transport.

II. MODEL

The influence of dynamical noise on the decay of an
stable fixed point atx50 is studied with an antisymmetri
one-dimensional mapF, F(2x)52F(x), on the intervalI
PR

I→I , xi°xi 115F„xi1Dg~xi ,j i !…, ~1!

whereg(xi ,j i) describes a multiplicative or additive nois
term with noise eventj i and noise amplitudeD. The influ-
ence of dynamical noise, restricted to different subsets of
interval I, on the dynamical systemF is studied by means o
four different noise functionsg. In Sec. III A the dynamics is
perturbed by additive dynamical noise in the first time s
i 50, only. Therefore,g(xi ,j i)5j id i ,0 . In Secs. III B and
III C, dynamical noise is restricted to a subinterval@a,b#
and @2a,2b#,a,b.0. ~By symmetry of the mapF, a re-
striction of noise to@a,b# always includes a restriction to
@2a,2b# throughout this paper, without mentioning it ex
plicitly.! Thus g(xi ,j i)5j iQ(xi2a)Q(b2xi), and Q( )
represents the Heaviside function. Finally in Sec. III D glob
dynamical noise is discussed. That is, the dynamical sys
is perturbed in each time stepi by a random event, and
g(xi ,j i)5j i .

Two different random processes are considered which
be both experimentally realized, but yield a different e

a
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PRE 59 2873WHEN NOISE DECREASES DETERMINISTIC DIFFUSION
hancement of the stability of an unstable fixed point.
random perturbations,uniform noisejuni as well asdichoto-
mous Markov noisejM are considered. Uniform noise is de
fined as whited-correlated noise with zero mean (^j ij i 8&
5d i ,i 8), wherej i is uniformly distributed in the intervalj i
P@21,1#. For dichotomous Markov noise,j i is uniformly
distributed in the setj iP$21,1%. In principle, the results of
this paper also hold for Gaussian white noise, not discus
here. This distinction between different types of dynami
noise (juni,jM) acting in different subsets ofI, is mainly
made to probe and optimize specific stabilization mec
nisms. For certain cases ofg analytical results can be de
rived. For sake of simplicity, only noise amplitudesD<0.5
are discussed within this paper.

The uniform noise distribution with amplitudeD is given
by h(Dj i)5@1/(2D)#Q(j i1D)Q(D2j i), and the corre-
sponding distribution for dichotomous Markov noise
h(Dj i)5 1

2 „d(j i2D)1d(j i1D)…. Therefore, a perturbation
of a given statexi by either of the two random process
yields the distribution of perturbed statesxi8 as

f ~xi8 ,xi !

5H 1

2D
Q„xi82~xi2D !…Q~xi1D2xi8! for juni

1

2
@d„xi82~xi2D !…1d„xi82~xi1D !…# for jM.

~2!

In both cases, the averaged perturbed state is equal to
unperturbed statê xi8&5* Ixi8 f (xi8 ,xi)dxi8/* Idxi85xi , re-
flecting symmetric perturbations.

The decay of the unstable fixed point atx50 is quantified
by the residence time (escape time) T(x0 ,D), representing
the mean time~with respect to different noise realizations! a
trajectory with initial statex0 spends onI. The mean resi-
dence time T(D) with respect to the initial states is intro
duced as

T~D !5

E
I
T~x0 ,D !dx0

E
I
dx0

. ~3!

III. DYNAMICAL PERTURBATIONS OF AN UNSTABLE
FIXED POINT

The decay of an unstable state is discussed for a lin
mapF on the intervalI 5@21,1#

F~xi !5axi , a.1, ~4!

with an unstable fixed point at the originx50. For a given
initial statex0 , the number of iterations to reach the boun
ary of I is given by the residence time

T~x0 ,D50!52
ln x0

ln a
~5!

and the mean residence time

T~D50!5^T~x0 ,D !& I51/lna. ~6!
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In the presence of dynamical noise the escape t
T(x0 ,D) is simulated for a given number of noise realiz
tions, and the mean escape timeT(D)5^T(x0 ,D)& is deter-
mined for a set of 100 initial values, which are equidistan
distributed on the interval@0,1#. In certain cases analytica
expressions can be derived and compared with nume
simulations.

A. Perturbation of initial states

Trajectories to given initial valuesx0 are perturbed at the
initial time step i 50, and continue noiselessly fori .0
@g(xi ,j i)5j id i ,0 in Eq. ~1!#. Then the residence time i
given by

T~x0 ,D !5

E
I
T~x08 ,D50! f ~x08 ,x0!dx08

E
I
dx08

. ~7!

For dichotomous Markov noise this results in

T~x0 ,D !5H 2
lnuD22x0

2u
2lna

for ux0u,12D

2
ln~x02D !

2lna
for ux0u>12D,

~8!

and for uniform noise in

FIG. 1. ~a! Dependence of the residence timeT(x0 ,D) on the
initial statex0 for the linear map (a51.1, D50.1) with dichoto-
mous Markov noisejM and uniform noise~full line: analytical re-
sult; dashed line: numerical simulation!. The dotted line marks the
noiseless residence time.~b! The average residence timeT(D),
scaled with the slopea, as a function of the noise amplitudeD.
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T~x0 ,D !5H 2
~x01D !ln~x01D !1~D2x0!lnuD2x0u22D

2D ln a
for ux0u,12D

2
~D2x0!lnuD2x0u1x02D21

2D ln a
for ux0u>12D.

~9!

In Fig. 1~a! it is shown that simulated and analytical residence times coincide rather well. For both random procesjuni

andjM, certain initial valuesx0 exist which are characterized by an increased residence time, in comparison to the no
one. The intersection point of the graphsT(x0 ,D50) andT(x0 ,D) does not depend on the slope, but depends on the n
level D. For dichotomous Markov noise this intersection point can be calculated analytically asD/A2. A further result is that
the corresponding amplification factorT(x0 ,D)/T(x0 ,D50) is independent of the slopea, whereas the differenceT(x0 ,D)
2T(x0 ,D50) grows with decreasing slope as 1/lna. However, despite the noise-induced enlargement of the residence
for certain initial values, the average residence time over all initial values

T~D !5^T~x0 ,D !& I5H 2
~12D !ln~12D !1D22

2 lna
for jM

2
1.5D225D2~12D !2ln~12D !

4D ln a
for juni

~10!
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decreases with the noise level for dichotomous Markov no
as well as for uniform white noise@Fig. 1~b!#. Otherwise,
perturbing only initial states, which are larger than the int
section point of the noisy and noiseless graph, e.g.,x0

.D/A2 for dichotomous Markov noise, a noise-induced
crease of the mean residence time can be generated. N
theless, an asymmetry between the effect of a positive a
negative noise event can give rise to stabilizing propert
although the distribution of noise is symmetric.

B. Dynamical perturbations on a small interval: †a,aa‡

In contrast to the above case, the decay of an unst
state is discussed when dynamical noise is restricted
small subinterval @a,b#PI and @g(xi ,j i)5j iQ(xi
2a)Q(b2xi) in Eq. ~1!#. For b5aa this subinterval is
large enough such that any~un!perturbed trajectory with 0
c
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,x0,b enters it at least once, but also small enough s
that a trajectory is perturbed only once forDj i.b2a, each
time it enters this subinterval.~In the following, only this
caseDj i.b2a is discussed.! As a consequence of the fac
that a negative or positive noise event can throw a trajec
(x0,b) out from the subinterval but not back into it, a
increase of the average number of iterations onI is possible
for uau.1. In a detailed analysis, analytical expressions
the mean residence timeT(D),T(D).T(D50), are de-
rived, as well as conditions for an optimized enhanced s
bility of the unstable fixed point by a proper choice ofa.

The residence timeT(x0 ,D) contains a noiseless dynam
ics on @0,a# and on@b,1#, superimposed by the effect o
perturbations on@a,b#. Thus for anyx0PI the residence
time can be described exactly, whereby only the effect
positive and negative perturbations in@a,b# is averaged:
T~x0 ,D !5„T~x0 ,D50!2T~a,D50!…Q~a2x0!1„T[a,b]
2 ~D !2T[a,b]~D50!1T[a,b]

1 ~D !…Q~b2x0!

1T~x0 ,D50!Q~x02b!, ~11!
n

rm
s.

re-
the

or
where T[a,b]
2 (D)5^T2(x0 ,D)& [a,b] , T[a,b]

1 (D)
5^T1(x0 ,D)& [a,b] , or T[a,b] (D50)5^T(x0 ,D50)& [a,b] ,
respectively, represents the mean residence time for traje
ries starting in@a,b# and getting perturbed by a negativ
positive, or no noise event. For analytical expressions,
the Appendix. Therefore, the mean enlargement of the r
dence time by a negative noise event is given by the dif
enceT[a,b]

2 (D)2T[a,b] (D50). Further, it is already taken
into account in Eq.~11! that any trajectory (x0,b) can be
perturbed once by a positive noise event, but several ti
by a negative noise event. Nevertheless, it can be shown
on average a trajectory is perturbed also once by a nega
noise event@17#.
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In Fig. 2 it is illustrated that dynamical perturbations o
@a,b# lead to an enlargement ofT(x0 ,D) in @0,b#, for both
random processes. This effect is clearly reduced for unifo
noise in comparison tojM for this special set of parameter
Nevertheless, in both cases, the stabilizing phenomenon
mains after averaging over all initial states, in contrast to
previous case in Sec. III A.

In the next step, the parametersa andD are discussed in
order to optimize the noise-induced stabilizing effect. F
this analysis Eq.~11! can be rewritten as~compare Fig. 2!

T~x0 ,D !5T~x0 ,D50!1DT[a,b]~D !Q~b2x0!, ~12!
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whereDT[a,b] (D) describes the mean net enlargement of
noiseless residence time

DT[a,b]~D !5T[a,b]
2 ~D !1T[a,b]

1 ~D !22T[a,b]~D50!.
~13!

The optimal interval@a,b5aa#, e.g., the optimala, for
a given noise amplitudeD, for which DT[a,b] (D) takes its
maximum value is approximated by the coincidence ofa
1b)/2 with the statexc , for which DT(x0 ,D)5T2(x0 ,D)
1T1(x0 ,D)22T(x0 ,D50) is maximal. This symmetric
choice of the optimal interval, denoted as@ac ,bc5aac#,
around the critical statexc is a good approximation, since th
subinterval is small, at least for weakly unstable fixed poin
althoughDT(x0 ,D) is not exactly symmetric with respect t
xc . In the case of dichotomous Markov noise,DT(x0 ,D) is
maximal forxc5D, yielding ac52D/(11a). For uniform
noise,DT(x0 ,D) is maximal forxc5hD, whereh50.834
is calculated numerically. In Fig. 3 the dependence
T[a,b] (D) on a confirms thatac is a good approximation
Even for uniform noise, whereac is shifted slightly from the
exact maximum, the maximum mean residence time can
determined within an error of 5% when usingac.

The mean net enlargementDT[ac ,bc] (D) of the residence
time in Eq. ~12! does not depend on the noise levelD, as
long as the critical boundaryac is concerned. However, i
depends very strongly on the slopea of the map, such that i
causes remarkable stabilization only for fixed points wh
are weakly unstable. Fora51.1 (1.01) and dichotomou
Markov noise, one obtainsDT[ac ,bc] (D)535.2 (563.8),

where it isDT[ac ,bc] (D)58.6 (82.7) for uniform noise.
Finally the optimized@18# mean residence time, calcu

lated from Eq.~12!, is given by

T~D !5T~D50!1DT[ac ,bc]~D !bc , ~14!

which leads to

FIG. 2. Residence timeT(x0 ,D) vs initial statesx0 for the lin-
ear map (a51.1,D50.1,a50.1) with dichotomous Markov noise
jM and uniform noise~full line: analytical result; dashed line: nu
merical simulation; dotted line: noiseless case!. The peak atx0

5D in the numerical simulation does not appear in the analyt
graph, sinceT(x0 ,D) is an average quantity on@a,b#. For uniform
noise the analytical residence time is slightly underestimated, s
noise eventsDj i,b2a exist for anyD.
e

,

f

be

h

T~D !5T~D50!1DT[ac ,bc]~D !
2a

11a
D ~15!

for dichotomous Markov noise. Thus the optimized re
dence timeT(D) increases linearly withD, and depends
strongly on the slopea. For a51.1, T(D)510.5136.9D,
whereasT(D)5100.51566.6D for a51.01. That is, dy-
namical noise on a small interval can clearly induce stabi
ing effects on the decay of an unstable state, even by a
aging over all initial states.

C. Dynamical perturbations on a larger interval: †a,1‡

Dynamical noise, acting locally in state space, can enla
the mean residence time,T(D).T(0). This stabilizing ef-
fect can be drastically amplified, if the length of the subint
val is increased to@ac,1#. Then a diffusion process is supe
imposed on the discussed stabilization phenomenon, s
that statesxi.aac can reenter the subinterval@ac ,aac# and
again contribute to the enlargement ofT(D). Numerical
simulations demonstrate that the increase ofT(D) for dy-
namical noise on the interval@a,1# and for a given ampli-
tudeD takes its maximum value, ifa5ac . This is true for
dichotomous Markov noise with an error of 1%, and for un
form noise with an error of 3–6 %, which is considered
negligible.

In Fig. 4 the residence timeT(x0 ,D50.1) for dichoto-
mous Markov noise, as well as for uniform dynamical noi
is compared with the noiseless residence time. A clear
largement of the residence time under the presence of
diffusion process on@ac ,1# exists in both cases. In the fol
lowing, the details are discussed only for dichotomous M
kov noise, since it is easier to handle (uj i u515const), but
can be transferred directly to the case of uniform noi
where the enlargement is reduced because of^ujMu&
52^ujuniu&.

This enlargement of the decay time of the unstable fix
point still holds for the average quantityT(D)
5^T(x0 ,D)&, T(D).T(D50), and is clearly enhanced i
comparison to the case, where dynamical noise is restri
to the subinterval@ac ,aac# as seen in Fig. 5. To investigat
the influence of the diffusion mechanism on this reduction

l

ce

FIG. 3. Mean residence timeT[a,b] (D) vs a for the linear map
(a51.1,D50.1). For dichotomous Markov noise~full line! the
maximum appears ata50.096, in comparison toac50.095. For
uniform noise~dashed line! the maximum appears ata50.086,
whereasac50.079.
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2876 PRE 59RENATE WACKERBAUER
instability separately, the amplifying factorF is defined as
the fraction of the residence timeT(D) with dynamical per-
turbations on@ac ,1#, and the corresponding residence tim
with dynamical perturbations on@ac ,aac#, only. As pre-
sented in Fig. 6~a!, the typical shape of the curve ofF versus
D does not dependent on the slopea. It is characterized by a
maximum value ofF at an intermediate noise levelDmax.

To understand the influence of the diffusion process
T(D), it is pointed out that dynamical noise shifts the gra
of the mapF @Eq. ~4!# by 6D. This corresponds to a shift o
the unstable fixed point tox* 56aD/(a21) for 7D.
~Again, because of the antisymmetric property of the m
only the dynamics on@0,1# is discussed.! As a consequence
of the shifted fixed point, statesxi with aac,xi,x* can
undergo a backward diffusion~by negative noise events!,
reenter the subinterval, where no dynamical noise acts,
thus further enlargeT(D).

The typicalD dependence of the amplifying factorF is
determined by a competition between two properties o
trajectory, with initial statex0 , to reach the boundary atx
51 and to reach the boundary atx5ac , where both prop-
erties become more likely with increasingD. For simplicity
only the extreme cases are discussed, e.g., a trajecto
perturbed by negative~positive! perturbations only. For this
n2 is defined as the minimum number of iterations, such t
a trajectory, starting atx051, reaches a statexn2,ac by
negative perturbationsj i52D, and correspondingly,n1 is
defined as the minimum number of iterations such tha
trajectory, starting atx05ac , reaches a statexn1.1 by

FIG. 4. The residence timeT(x0 ,D) vs the initial statex0 for a
given noise amplitudeD50.1 and different slopes~a! a51.1 and
~b! a51.01: dichotomous Markov noise~full line!, uniform noise
~dashed line!, and the noiseless case~dotted line!.
n

,

nd

a

is

t

a

positive perturbationsj i51D. The differencen22n1 is
plotted in Fig. 6~b!. For D.Dmax, whereDmax50.2 for a
51.1, both minimum numbers are similar,n2'n1, reflect-
ing a symmetry between the effect of a negative and a p
tive noise event on@ac ,1#. Therefore, the decrease of th
amplifying factorF with increasingD (D.Dmax) is com-
pletely described by a diffusion process with increasing d
fusion constant. In contrast, forD,Dmax, an asymmetry be-
tweenn2 andn1, wheren2@n1 for smallD, characterizes
the diffusion process, although the noise distribution is sy
metric. The combination of the fact that the probability f
finding n2 successive negative perturbations in a finite
quence of noise realizations is rather small, together with
fact thatn2 decreases with increasing noiseD, dominates the
competition by an increase ofF with D. That is, for D
5Dmax there already exist subsequences in the noise rea
tion, such that a trajectory with initial statex051 can reach
a statexi,ac , whereas for smaller amplitudesD,Dmax
only statesx0,1 are allowed to reach the boundary atac . In
addition to this, the asymmetry betweenn2 andn1 becomes
smaller, when the shifted fixed pointx* leaves the intervalI,
which happens fora51.1 at D50.09 @x* (D50.09)51#.
At this noise level the amplifying factorF changes its slope
as seen in Fig. 6~a!. Further it is briefly mentioned that a
comparison of different unstable states tells thatDmax in-
creases with the slopea, which is a consequence of an asym
metry betweenn2 andn1 for even larger noise amplitudes

FIG. 5. Mean residence timeT(D) vs the noise amplitudeD for
different slopes~a! a51.1 and~b! a51.01: dynamical noisejM on
@ac,1# ~full line with L, 200 noise realizations!, dynamical noise
jM on @ac ,aac# „dotted line withL, 200 noise realizations; full
line, analytical result@Eq. ~15!#…, and global dynamical noise
~dashed line withL, 200 noise realizations!. The dotted lines mark
the noiseless residence timeT(D50).
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D. Global dynamical perturbations

Concerning dynamical perturbations on the entire inter
I @g(xi ,j i)5j i in Eq. ~1!#, the noisy dynamics is charac
terized completely by the shifted fixed pointx* , and no
longer by the fixed point atx50. Therefore, the mechanism
causing the enlargement of the residence time near the
stable fixed pointx50 ~Sec. III B! is no longer active. As
expected, one finds a decrease of the mean residence
T(D) with the noise levelD @Figs. 5~a! and 5~b!#. Neverthe-
less, initial statesx0 ,x0,x* , exist, such that dynamica
noise increasesT(x0 ,D) in comparison to the unnoisy cas
~Fig. 7!. This is a consequence of the shifted fixed pointx* ,
allowing backward diffusion, which is not present forD
50.

Since global dynamical noise does not enhance the m
residence timeT(D), it is only addressed briefly whyT(D)
remains constant for small noise levelsD. As presented in
Figs. 5~a! and 5~b!, T(D) starts to decrease withD, when the
critical noise level, for whichx* leavesI, is exceeded. Fo
a51.1 this happens forD50.09 and fora51.01 for D
50.01. In contrast to the previous case~Sec. III C!, the time
scale of the dynamics is determined only by the numbe
iterations a trajectory withx050 needs to reachxn15x* .
Becausen15 ln 2/lna is independent ofD, n1 starts to de-
crease as soon asx* .1, which is the onset of the decrease
T(D).

If one introduces an asymmetry of the noise-induc
shifted fixed points@x* 56aD/(a21)# by a change of the
slope atx50 such thata5a1 for x,0 anda5a2 ,a2.a1

FIG. 6. ~a! Amplifying factor F vs D for different slopes,a
51.01 ~above curve! anda51.1. The dotted line marksF51. ~b!
The asymmetryn22n1 between backward and forward iteration
on the interval@ac ,1# as a function of the noise levelD for a map
with slopea51.1 and dichotomous Markov noise.
l

n-

me

an

f

f

d

for x>0 in Eq. ~4!, global dynamical noise yields a sligh
increase of the mean residence timeT(D)5^T(x0 ,D)& [0,1]

when averaging over the initial states in@0,1#. This is con-
sistent with the results proposed by Agudov@5# in the con-
text of continuous dynamical systems. However, for init
values in@21,0#, the corresponding averaged residence ti
T(D)5^T(x0 ,D)& [ 21,0] decreases withD, dominates the sta
bilizing contribution of@0,1#, and even yields a decrease
the mean residence timeT(D) with the noise amplitude on
the entire intervalI 5@21,1#.

IV. APPLICATION: DETERMINISTIC DIFFUSION

The study of a periodic continuation of the map in Eq.~4!
is physically motivated, such that it exhibits determinis
diffusive behavior. It is well accepted that essential prop
ties of deterministic diffusion are already contained in sim
one-dimensional periodic maps@7,8#. Based on previous re
sults for noise-induced delay of unstable states, the con
ture is that dynamical noise can decrease the determin
diffusion under certain conditions.

Consider the linear mapF in Eq. ~4!, which is continued
periodically beyond the interval@21,1# onto the real line by
a lift of size 2, such thatF(x12)5F(x)12 andF antisym-
metric @Fig. 8~a!#. In the context of deterministic diffusion
x0 is called the injection point on@21,1#. To obtain a ho-
mogeneous distribution of injection points,F is chosen to be
a continuous, piecewise linear map with the requireme
F(1/a)51 andF(1)53. The shifted noisy maps are contin
ued in an analogous way, as illustrated in Fig. 8~a!, such that
all graphs intersect atF(1)53. To be comparable with Sec
III, the number of iterations on@21,1# is regarded as resi
dence time of the deterministic diffusion process.

As expected, global dynamical noisejM yields a decrease
of the mean residence timeT(D) for the deterministic diffu-
sion process, which coincides with the correspondingT(D)
in Sec. III D, since by construction of the continuation ofF
in Fig. 8~a! the distribution of injection points is homoge
neous.

However, dynamical perturbations on@ac,1# ~and, by
symmetry, also on@21,2ac#) yield a delay of the determin
istic diffusion process as illustrated in Fig. 8~b!. For this
process, on average, the mean residence timeT(D) is the

FIG. 7. Mean residence timeT(x0 ,D) for global dynamical
noise with amplitudeD50.06 ~full line! and for the noiseless cas
~dotted line!. The slope of the map isa51.1. The dashed line mark
the noise-induced shifted fixed pointx* .
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same as for the isolated map in Sec. III C, but with lar
fluctuations superposed on it. These fluctuations are
caused by low statistics, since they are robust against
increase of the number of iterations~from 106 to 107). More-
over, they can be understood as a consequence of an
mogeneous distribution of injection points on@21,1#. The
local restriction of the perturbations, and therefore the f
quent reentering of the trajectory into the unperturbed reg
x,ac by backward iteration~as discussed in Sec. III C!,
yields an increased frequency of statesxi near ac , which
evolves by positive perturbations1D to the cell boundary a
x51. Thus negative fluctuations@minima in T(D)] are ex-
pected, ifac is mapped to injection points nearx51. This
happens for noise levelsD for which thenth iterate is deter-
mined by Fn(ac1D)51 and ac52D/(11a). For n51,
one obtainsD5(11a)/(3a1a2)50.47 for a51.1; analo-
gously,n52 corresponds toD50.29, andn53 to D50.2.
These critical noise levels fit well with the minima ofT(D)
in Fig. 8~b!. Correspondingly, the maxima inT(D) appear at
noise levels, for whichac is mapped onto injection point
nearx50 by positive perturbations. After some calculatio
one findsD50.36 for the first maximum inT(D).

For smaller noise levels,T(D) depends rather linearly o
D, and the fluctuations disappear, since the number of it
tions of the stateac on @ac,1# increases. In particular, fo
D,0.16, the number of iterations is already large enou
such that dynamical noise can spread the initial inhomo

FIG. 8. ~a! Periodic continuation of the linear map in Eq.~4!
~full line!. The dashed lines, above and below this curve, co
spond to the noisy maps (a51.1, D50.08). ~b! Corresponding
residence timeT(D) in @21,1# with dynamical perturbations on
@ac ,1# ~full line, 106 iterations!. The dashed line represents th
residence time of the single map, discussed in Sec. III C.
e
ot
he

ho-

-
n

,

a-

h
e-

neity of states nearac over the entire intervalI.

V. CONCLUSIONS

Dynamical noise~dichotomous Markov noise, uniform
white noise, and also Gaussian white noise@19#! can induce
a clear enhancement of the stability of an unstable fix
point, in particular for weakly unstable states, and a cl
enhancement of localization in deterministic diffusion mo
els. In both cases, even the mean residence time of a typ
trajectory near the unstable state increases with the n
level, if noise is added locally in state space, although
distribution of the noise events is symmetric. This stabilizi
property is caused by a combination of two facts:~1! Since
noise can throw a trajectory out from a subinterval, but n
back into it, the number of iterations on the entire interv
increases, if the fixed point is unstable.~2! Since noise shifts
the unstable fixed point, backward iteration is possible on
interval. By numerical and analytical investigations, para
eters can be derived for which the stabilizing phenomeno
optimized for a given random process.

Of course this noise-induced enhancement of stab
does not represent a true stabilization in the sense of con
ling. Nevertheless, it is interesting to know to what exten
~simple type of multiplicative! dynamical noise can genera
stabilization or localization in deterministic dynamical sy
tems. On the other side, since noise is ubiquitous in nat
and experimental systems, the~measured! time scale of the
decay of an unstable state can be essentially change
random interactions of the deterministic system.

The presented analysis and the corresponding stabili
mechanisms are not restricted to unstable fixed points,
still hold for unstable periodic orbits of larger period
~non!linear dynamical systems. Also, a generalization to
termittent behavior is straightforward, which is related fu
ther to diffusion in Hamiltonian systems as well as~for ex-
ample! to turbulence in dissipative dynamical systems@12#.
There, strange kinetics as trapping and flights of particle
present, which can be discussed successfully within the c
cept of Lévi processes.

In further studies the possible influence of these results
conductivity in general, and on thermodynamical relatio
should be addressed. Since unstable periodic orbits or in
mittent behavior are present in many physical, chemical
biological systems, experimental realizations of nois
induced stabilization and noise-induced localization sho
be possible.
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APPENDIX

By symmetry of the linear map in Eq.~4!, only initial
statesx0P@0,1# are considered. The residence time for t
unperturbed map is given by

T~x0 ,D50!52
ln x0

ln a
, ~A1!

-
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yielding the mean noiseless residence time on@a,b#

T[a,b]~D50!5

E
a

b

T~x0 ,D50!dx0

b2a
52

b ln b2a ln a1a2b

~b2a!ln a
. ~A2!

For dichotomous Markov noise the residence time for negative (2) or positive (1) perturbations is represented by

T7~x0 ,D !5E
I
T~x08 ,D50!d„x082~x07D !…dx0852

lnux07Du
lna

, ~A3!

which corresponds to the mean residence time on@a,b#:

T[a,b]
7 ~D !5^T7~x0 ,D !& [a,b]52

~b7D !lnub7Du2~a7D !lnua7Du1a2b

~b2a!ln a
. ~A4!

For uniform noise, the residence time for negative (2) or positive (1) perturbations is given by

T2~x0 ,D !5E
I
T~x08 ,D50!

Q„x082~x02D !…Q~x02x08!

D
dx0852

~D2x0!lnuD2x0u1x0ln x02D

D ln a
, ~A5!

T1~x0 ,D !5E
I
T~x08 ,D50!

Q~x082x0!Q~x01D2x08!

D
dx0852

~D1x0!lnuD1x0u2x0ln x02D

D ln a
, ~A6!

which leads to the corresponding mean residence time on@a,b#

T[a,b]
7 ~D !5^T7~x0 ,D !& [a,b]52

6b2ln b7a2ln a7~b7D !2lnub7Du6~a7D !2lnua7Du23D~b2a!

2D~b2a!ln a
. ~A7!
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