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When noise decreases deterministic diffusion
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Dynamical noise, acting homogeneously in each time step, can enhance the stability of an unstable fixed
point. However, if dynamical noise is added locally in state space, additional clear enhancement can be
achieved, if this restriction is chosen properly. A systematic analysis of the influence of local and global
dynamical noise on the residence time of an unstable state is presented, and optimal parameters for the
stabilizing mechanisms are discussed. As a consequence, it is demonstrated that local dynamical noise can
yield increased localization in deterministic diffusion modé&1063-651X%99)08203-3

PACS numbegs): 05.45—a, 05.40--a, 05.60-k

I. INTRODUCTION ready induce transpofL0]. Deterministic diffusion has been
studied to explain the dynamics of real physical systems like
The fact that dynamical noise can enhance the stability ofosephson junctions in the presence of a microwave field
an unstable fixed point appears as a somewhat counterintlil1,12. It is also deeply connected with phenomena as quan-
tive behavior, but is reported in several studies. In the prestum dynamical localizatiorj13] and the related Anderson
ence of a periodic force, noise-enhanced stability is found iocalization[14], which have been used to explain a wide
the transient dynamics of an overdamped particle in a noisyariety of transport or spectroscopic phenomena in the pres-
cubic potentia[1], or in a noisy bistable system operating in €nce of(randon disorder{ 15]. Increasing attention in deter-
a strong forcing regimé2,3]. This is discussed as a noise- Ministic diffusion is also caus’ed by recent advancements of
induced failure of a switch device in the context of stochastid?€eriodic orbit theory{9] and Levi flight statistics[12]. For
resonance. However, in the absence of a periodic drive, e.gexample, in Ref[16], a totally dynamical approach was pre-
in systems which exhibit an unstable fixed point withoutSented in deriving a v process which demonstrates a link
forcing, dynamical noise can also enhance the stability. IPf chaotic dynamical systems and associated random pro-
the Lorenz system the switching of a typical trajectory be-cesses. Here we show that local noise in state space can
tween the two Symmetric lobes of the Lorenz attractor can b@learly delay deterministic diffusion and therefore enhance
significantly postponed by dynamical noig&]. This noise- localization properties in transport.
induced delay of the decay of an unstable state was also
reported recently within a model of overdamped Brownian Il. MODEL
motion in a potential field5]. Essential mechanisms for such ) ) )
a stabilizing behavior were discussed in detail in the case of The influence of dynamical noise on the decay of an un-
one-dimensional discontinuous maf#j, and identified as Stable fixed point ak=0 is studied with an antisymmetric
noise-induced shifts of unstable states resulting in noiseone-dimensional map, F(—x)=—F(x), on the interval
induced attractive regions in state space. eR
All these studies deal with global dynamical noise, e.g., a
deterministic dynamical system is perturbed by a stochastic =1, Xi—>Xi+1=FX+Dg(Xi,&)), (1)
process homogeneously in each time step. However, if dy-
namical noise acts only locally in state space, a considerabihereg(x;,£;) describes a multiplicative or additive noise
enhancement of the stability can be achieved, even in casérm with noise eveng; and noise amplitud®. The influ-
where there is no enhancement for global noise. For a lineag@nce of dynamical noise, restricted to different subsets of the
map on a torus this was mentioned briefly in Réf, but not  intervall, on the dynamical systefa is studied by means of
discussed in detail. Thus, in the first part of this pag@ec.  four different noise functiong. In Sec. Ill A the dynamics is
), the influence of dynamical noise on the decay of anperturbed by additive dynamical noise in the first time step
unstable fixed point is investigated, and general conditions=0, only. Thereforeg(x;,&)=¢;o. In Secs. IlIB and
are derived to optimize the decrease of instability by localll C, dynamical noise is restricted to a subinteryal, 8]
noise. and[ — a,— B],a,8>0. (By symmetry of the mag-, a re-
These findings can be transferred directly to the problenstriction of noise td «,] always includes a restriction to
of deterministic diffusiorf7—9] (Sec. I\), where chaotic de- [— «,— B] throughout this paper, without mentioning it ex-
terministic dynamics induces a diffusive behavior, which isplicitly.) Thus g(x;,&)=&0(x;—a)®(B8—X;), and O()
in contrast to ratchetlike devices, where fluctuations can alrepresents the Heaviside function. Finally in Sec. 111 D global
dynamical noise is discussed. That is, the dynamical system
is perturbed in each time stepby a random event, and
*Present address: Department of Chemistry, West Virginiag(X;,&)=2¢;.
University, Morgantown, WV 26506. Electronic address: Two different random processes are considered which can
wacker@mpipks-dresden.mpg.de be both experimentally realized, but yield a different en-
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hancement of the stability of an unstable fixed point. As 60
random perturbationginiform noise£"™ as well asdichoto- '
mous Markov nois¢M are considered. Uniform noise is de-
fined as whites-correlated noise with zero meaf&(&;:) 401,
=di»), where¢; is uniformly distributed in the intervag; B
e[—1,1]. For dichotomous Markov nois€; is uniformly ]
distributed in the se§; e{—1,1}. In principle, the results of 20
this paper also hold for Gaussian white noise, not discussed i
here. This distinction between different types of dynamical

T(x0,D)

noise ¢ &M) acting in different subsets df is mainly ol , ,
made to probe and optimize specific stabilization mecha- 0.0 . . . . 1.0
nisms. For certain cases dfanalytical results can be de-
rived. For sake of simplicity, only noise amplitudBs<0.5 1.00 SRR T '
are discussed within this paper. i ]
The uniform noise distribution with amplitude is given 0.981 T
by h(D¢&)=[1/(2D)]O(&+D)O(D—¢;), and the corre- — [ ]
sponding distribution for dichotomous Markov noise is o 096¢ ]
h(D¢&)=3(8(&—D)+ 8(&+D)). Therefore, a perturbation % I ]
of a given statex; by either of the two random processes < 094r B
yields the distribution of perturbed states as 0.0 i y
f(xi, !Xi) 090: b> . . . . ]
0.0 0. 02 03 04 05

D

FIG. 1. (a) Dependence of the residence tiMéxy,D) on the
1 , , M initial statex, for the linear map §=1.1, D=0.1) with dichoto-
5[5(Xi —(Xi—D))+o(x{ —(x;+D))] for &*. mous Markov noisg&™ and uniform noisefull line: analytical re-
(2 sult; dashed line: numerical simulatjorThe dotted line marks the

. noiseless residence timéh) The average residence tinlgD),
In both cases, the averaged perturbed state is equal to ttzyé'aled with the slope, as a function of the noise amplitude

unperturbed state(x; )= [x{ f(x{ ,x)dx//f,dx =x;, re-

flecting symmetric perturbations. , . In the presence of dynamical noise the escape time
The decay of the unstable fixed poinbat 0 is quantified  1( ' D) is simulated for a given number of noise realiza-

by the resu_jence_ time (escape _tlmeIx'B,D_), representing  tions, and the mean escape tiffiD) =(T(xo,D)) is deter-

the mean timéwith respect to different noise realizatio®  mined for a set of 100 initial values, which are equidistantly

trajectory with initial statex, spends orl. The mean resi- gisributed on the interval0,1]. In certain cases analytical

dence time D) with respect to the initial states is intro- gynressions can be derived and compared with numerical

1 _
E@(Xi —(x;—D))O(x;+D—x{) foré

duced as simulations.
f T(X0,D)dxo
= Sl A. Perturbation of initial states
T(D) : ()
deo Trajectories to given initial valueg, are perturbed at the
: initial time stepi=0, and continue noiselessly far>0
[9(xi,&)=¢&i6ip in Eq. (1)]. Then the residence time is
IIl. DYNAMICAL PERTURBATIONS OF AN UNSTABLE given by
FIXED POINT
The decay of an unstable state is discussed for a linear lT(x(’),D=0)f(x(’),x0)dx()
mapF on the interval =[ —1,1] T(X,D)= ) 7
F(x)=ax, a>1, @ j,dxé

with an unstable fixed point at the origin=0. For a given

initial statexy, the number of iterations to reach the bound- For dichotomous Markov noise this results in

ary of | is given by the residence time 2 2
T(%0,D=0)= — X0 5) T(x.D 2Ina ’ .
t - - T T - X f =
0 Ina (X0,D) In(xo—D) (8)
. . ———— for |xo|=1-D,
and the mean residence time 2lna

T(D=0)=(T(Xq,D))=1/Ina. (6) and for uniform noise in



2874 RENATE WACKERBAUER PRE 59

Xo+D)IN(Xg+ D)+ (D—X%gy)In|D—x| —2D
_( ot D)In(xp+D)+( o)ln| ol for [xg|<1-D
2DIna

TXx0.D)=1 (o )in|D = x| +%g—D—1 ©
- for |xo|=1—-D.

2DIna

In Fig. 1(a) it is shown that simulated and analytical residence times coincide rather well. For both random prétksses
and &M, certain initial values, exist which are characterized by an increased residence time, in comparison to the noiseless
one. The intersection point of the graphéxy,D=0) andT(xy,D) does not depend on the slope, but depends on the noise
level D. For dichotomous Markov noise this intersection point can be calculated analytic&li{x@s A further result is that
the corresponding amplification fact®(x,,D)/T(Xy,D =0) is independent of the sloe whereas the differencg(xy,D)
—T(x9,D=0) grows with decreasing slope as ldlrHowever, despite the noise-induced enlargement of the residence time
for certain initial values, the average residence time over all initial values

 (1-D)In(1-D)+D-2

for &V
2Ilna
TO)=(Tx0.DI=1 " 1 552 5D (1-D)2IN(1-D) . (10
B 4DIna for ¢

decreases with the noise level for dichotomous Markov noise<x,<g enters it at least once, but also small enough such
as well as for uniform white noisgFig. 1(b)]. Otherwise, that a trajectory is perturbed only once D¢, > B8— «, each
perturbing only initial states, which are larger than the intertime it enters this subinterval(ln the following, only this
section point of the noisy and noiseless graph, exg., caseD¢>pB— « is discussed.As a consequence of the fact
>D/+/2 for dichotomous Markov noise, a noise-induced in-that a negative or positive noise event can throw a trajectory
crease of the mean residence time can be generated. Neveg, < ) out from the subinterval but not back into it, an
theless, an asymmetry between the effect of a positive andjgcrease of the average number of iterations @mpossible
negative noise event can give rise to stabilizing propertiesior |5|>1. In a detailed analysis, analytical expressions for

although the distribution of noise is symmetric. the mean residence tim&(D),T(D)>T(D=0), are de-
. ) . rived, as well as conditions for an optimized enhanced sta-
B. Dynamical perturbations on a small interval: [ a,aa] bility of the unstable fixed point by a proper choice @f

In contrast to the above case, the decay of an unstable The residence tim&(xy,D) contains a noiseless dynam-
state is discussed when dynamical noise is restricted to i@s on[0,«] and on[B,1], superimposed by the effect of
small subinterval [a,8]el and [g(X;,&)=§&0O(X; perturbations orf «,8]. Thus for anyxyel the residence
—a)0®(B—X;) in Eq. (1)]. For B=aa this subinterval is time can be described exactly, whereby only the effect of
large enough such that ajun)perturbed trajectory with O positive and negative perturbations[ia, 8] is averaged:

T(X0,D)=(T(X0,D=0)~T(@,D=0))0(a—Xo) + (T[y 4(D) = T(ag)(D=0)+T[; 5(DNO(B—Xp)

where Tia.5(D)=(T (X0,D))[a.51 » T[thﬁ](D) In Fig. 2 it is illustrated that dynamical perturbations on
:<T+(X0!D)>[a,ﬁ] , OF T g (D=0)=(T(X0,D=0))[0.5 - [a,B] lead to an enlargement df(xq,D) in [0,8], for both
respectively, represents the mean residence time for trajectétandom processes. This effect is clearly reduced for uniform
ries starting in[«, 8] and getting perturbed by a negative, noise in comparison tgM for this special set of parameters.
positive, or no noise event. For analytical expressions, sedevertheless, in both cases, the stabilizing phenomenon re-
the Appendix. Therefore, the mean enlargement of the resimains after averaging over all initial states, in contrast to the
dence time by a negative noise event is given by the differprevious case in Sec. Il A.

enceT, 5(D) =T, z(D=0). Further, it is already taken In the next step, the parametersandD are discussed in
into account in Eq(11) that any trajectory X,<<B8) can be order to optimize the noise-induced stabilizing effect. For
perturbed once by a positive noise event, but several timethis analysis Eq(11) can be rewritten aécompare Fig. 2

by a negative noise event. Nevertheless, it can be shown that

on average a trajectory is perturbed also once by a negative

noise evenf17]. T(X0,D)=T(X0,D=0)+AT(, 5(D)O(B—Xg), (12
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FIG. 2. Residence tim&(xy,D) vs initial states¢, for the lin- FIG. 3. Mean residence timg, (D) vs « for the linear map

ear map §=1.1D=0.1a=0.1) with dichotomous Markov noise (a=1.1p=0.1). For dichotomous Markov noisgull line) the
&M and uniform noisefull line: analytical result; dashed line: nu- maximum appears a¥r=0.096, in comparison tae,=0.095. For
merical simulation; dotted line: noiseless cas€he peak atx, uniform noise(dashed ling the maximum appears at=0.086,
=D in the numerical simulation does not appear in the analyticalwhereasa,=0.079.

graph, sincd (xq,D) is an average quantity dr, 8]. For uniform

noise the analytical residence time is slightly underestimated, since 2a

noise eventd &< B— a exist for anyD. T(D)=T(D=O)+AT[%’BC](D) mD (15
whereAT|, z (D) describes the mean net enlargement of th

noiseless residence time efor dichotomous Markov noise. Thus the optimized resi-

dence timeT(D) increases linearly wittD, and depends
strongly on the slopa. Fora=1.1, T(D)=10.5+36.D,
AT(0,5(D)=T[, 5(D)+T[, 5(D)—2T(, 5(D=0). whereasT(D)=100.5+566. for a=1.01. That is, dy-
namical noise on a small interval can clearly induce stabiliz-
ing effects on the decay of an unstable state, even by aver-
The optimal interval @, 8=ac«], e.g., the optimak, for ~ aging over all initial states.
a given noise amplitud®, for which AT, (D) takes its
maximum value is approximated by the coincidence ef ( C. Dynamical perturbations on a larger interval: [ea,1]
+ B)/2 with the statex., for which AT(xq,D)=T"(Xq,D) , ) i ,
+T%(x0,D)—2T(Xo,D=0) is maximal. This symmetric Dynamical noise, agtlng locally in state_ space, can enlarge
choice of the optimal interval, denoted Ba.,B.=aa.], the mean residence tim&(D)>T(0). This stabilizing ef-

around the critical state, is a good approximation, since the fect can be drastically amplified, if the length of the subinter-

subinterval is small, at least for weakly unstable fixed pointsVal S increased ta;,1]. Then a diffusion process is super-

althoughA T(x,,D) is not exactly symmetric with respect to imposed on the discussed stabilizat'ion phenomenon, such
X.. In the case of dichotomous Markov noigeT(x,,D) is that.statesq_>aozc can reenter the subintervak. ,aa ] a_md
maximal forx.=D, yielding a.=2D/(1+a). For uniform adan contribute to the enlargement ©{D). Numerical
noise, AT(xo,D) is maximal forx,= 7D, where =0.834 simulations demonstrate that the increaser¢b) for dy-

’ ’ c y . . . . . .
is calculated numerically. In Fig. 3 the dependence of*@mical noise on the intervik, 1] and for a given ampli-
Tia.5(D) ON @ confirms thate, is a good approximation. tudeD takes its maximum value, = a. Th'os is true for
Even for uniform noise, whera, is shifted slightly from the ~dichotomous Markov noise with an error of 1%, and for uni-
exact maximum, the maximum mean residence time can bf'™M noise with an error of 3—6 %, which is considered as
determined within an error of 5% when using. negligible.

The mean net enlargemeAl |, (D) of the residence In Fig. 4 the _re5|dence t'mE(XO’D.: 0.1) for d'.ChOto'.
i in Eq.(12) d td (Cd c th ise lewl mous Markov noise, as well as for uniform dynamical noise,
ime in Eq. ( .). oes not depend on the noise e as s compared with the noiseless residence time. A clear en-
long as the critical boundarg. is concerned. However, it

q d I he sl fth h that | largement of the residence time under the presence of the
epends very strongly on the slop®t the map, such that it i gjon process ola.,1] exists in both cases. In the fol-

causes remarkable stabilization only for fixed_points WhiChlowing, the details are discussed only for dichotomous Mar-
are weakly unstable. Fom=1.1 (1.01) and dichotomous kov noise, since it is easier to handig;(=1=const), but

Markov noise, one Obtainswl%ﬂcl(D):SS'z (563.8), can be transferred directly to the case of uniform noise,

where it isAT;, 3(D)=8.6 (82.7) for uniform noise. where the enlargement is reduced because (|gM|)
Finally the optimized[18] mean residence time, calcu- =2(|&""|).
lated from Eq.(12), is given by This enlargement of the decay time of the unstable fixed
point still holds for the average quantityT(D)
T(D)=T(D=0)+AT(, (D), (14) =(T(xq,D)), T(D)>T(D=0), and is clearly enhanced in

comparison to the case, where dynamical noise is restricted
to the subinterval a.,aa;] as seen in Fig. 5. To investigate
which leads to the influence of the diffusion mechanism on this reduction of
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FIG. 4. The residence tim&(x,,D) vs the initial statex, for a FIG. 5. Mean residence tinT/§D) vs the noise amplitud® for

given noise amplitud®=0.1 and different slopeg) a=1.1 and  different slopega) a=1.1 and(b) a=1.01: dynamical nc_)isg"" on
(b) a=1.01: dichotomous Markov nois@ull line), uniform noise  [@c1] (full line with &, 200 noise realizationsdynamical noise

(dashed ling and the noiseless caggotted ling. &M on[a¢,aa.] (dotted line with &, 200 noise realizations; full
line, analytical result[Eq. (15)]), and global dynamical noise

(dashed line with¢>, 200 noise realizationsThe dotted lines mark

. . o . , the noiseless residence tir¢D =0).
instability separately, the amplifying factdr is defined as

the fraction of the residence tinT/g§ D) with dynamical per- » . ) R
turbations or{ a.,1], and the corresponding residence timePOSitive perturbations;;=+D. The differencen —n" is
with dynamical perturbations ofa.,aa.], only. As pre- Plotted in Fig. €b). For D>Dnay, whereDp,,=0.2 fora

sented in Fig. @), the typical shape of the curve &f versus = 1.1, both minimum numbers are similariwnf, reflect- _
D does not dependent on the slapdt is characterized by a ing & symmetry between the effect of a negative and a posi-
maximum value ofb at an intermediate noise levBl.y. tive noise event o, 1]. Therefore, the decrease of the

To understand the influence of the diffusion process oramplifying factor® with increasingD (D> Dy, is com-
T(D), it is pointed out that dynamical noise shifts the graphpletely described by a diffusion process with increasing dif-
of the mapF [Eq. (4)] by =D. This corresponds to a shift of fusion constant. In contrast, f&<D,,,, an asymmetry be-
the unstable fixed point to* =*+aD/(a—1) for =D. tweenn~ andn™, wheren™>n" for smallD, characterizes
(Again, because of the antisymmetric property of the mapthe diffusion process, although the noise distribution is sym-
only the dynamics ofi0,1] is discussed.As a consequence metric. The combination of the fact that the probability for
of the shifted fixed point, stateg with aa,<x;<x* can finding n~ successive negative perturbations in a finite se-
undergo a backward diffusiotby negative noise events quence of noise realizations is rather small, together with the
reenter the subinterval, where no dynamical noise acts, arfdct thatn™ decreases with increasing noBgdominates the
thus further enlarg& (D). competition by an increase ab with D. That is, for D

The typicalD dependence of the amplifying factdr is =D ax there already exist subsequences in the noise realiza-
determined by a competition between two properties of dion, such that a trajectory with initial statg=1 can reach
trajectory, with initial statexy, to reach the boundary at a statex;<a., whereas for smaller amplitudd3 <D 5«
=1 and to reach the boundary st «;, where both prop- only state,<<1 are allowed to reach the boundarnegt In
erties become more likely with increasimy For simplicity  addition to this, the asymmetry between andn* becomes
only the extreme cases are discussed, e.g., a trajectory ssnaller, when the shifted fixed poixt leaves the intervdl,
perturbed by negativgositive perturbations only. For this, which happens fom=1.1 atD=0.09 [x*(D=0.09)=1].
n~ is defined as the minimum number of iterations, such thait this noise level the amplifying factab changes its slope,

a trajectory, starting ak,=1, reaches a state,-<a., by  as seen in Fig. ®. Further it is briefly mentioned that a
negative perturbation§=—D, and correspondinglyp™ is  comparison of different unstable states tells tBat,, in-

defined as the minimum number of iterations such that areases with the slogg which is a consequence of an asym-
trajectory, starting ak,=a., reaches a stat®,+>1 by metry betweem™ andn* for even larger noise amplitudes.
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40 b> ' 3 FIG. 7. Mean residence tim&(xq,D) for global dynamical
: ] noise with amplitudeD =0.06 (full line) and for the noiseless case
300 3 (dotted ling. The slope of the map s=1.1. The dashed line marks
i ] the noise-induced shifted fixed poixt.
" ;
! 20? ] for x=0 in Eq. (4), global dynamical noise yields a slight
< : ] increase of the mean residence tifigD) =(T(Xo,D) )01
10F 9 when averaging over the initial states[i®,1]. This is con-
: ] sistent with the results proposed by Agud®} in the con-
O§ 1 text of continuous dynamical systems. However, for initial
00 01 02 values in[ — 1,0], the corresponding averaged residence time

T(D)=(T(x0,D))[-1,0; decreases with, dominates the sta-
bilizing contribution of[0,1], and even yields a decrease of

FIG. 6. (a) Amplifying factor ® vs D for different slopesa  the mean residence timE(D) with the noise amplitude on
=1.01(above curvganda=1.1. The dotted line mark® = 1. (b) the entire interval =[ — 1,1].

The asymmetryn ™ —n™ between backward and forward iterations
on the interval a.,1] as a function of the noise level for a map

with slopea= 1.1 and dichotomous Markov noise. IV. APPLICATION: DETERMINISTIC DIFFUSION

The study of a periodic continuation of the map in E4).
is physically motivated, such that it exhibits deterministic

Concerning dynamical perturbations on the entire intervabliffusive behavior. It is well accepted that essential proper-
| [g(xi,&)=¢ in Eq. (1], the noisy dynamics is charac- ties of deterministic diffusion are already contained in simple
terized completely by the shifted fixed poirt, and no  one-dimensional periodic map%,8]. Based on previous re-
longer by the fixed point at=0. Therefore, the mechanism sults for noise-induced delay of unstable states, the conjec-
causing the enlargement of the residence time near the umdre is that dynamical noise can decrease the deterministic
stable fixed poinx=0 (Sec. IlIB) is no longer active. As diffusion under certain conditions.
expected, one finds a decrease of the mean residence time Consider the linear map in Eqg. (4), which is continued
T(D) with the noise leveD [Figs. §a) and b)]. Neverthe-  periodically beyond the interv@l-1,1] onto the real line by
less, initial statesxy,Xq<x*, exist, such that dynamical a lift of size 2, such thaF (x+2)=F(x)+ 2 andF antisym-
noise increase$(Xxq,D) in comparison to the unnoisy case metric [Fig. 8a)]. In the context of deterministic diffusion,
(Fig. 7). This is a consequence of the shifted fixed paihf X, is called the injection point oh—1,1]. To obtain a ho-
allowing backward diffusion, which is not present f&r  mogeneous distribution of injection points,is chosen to be
=0. a continuous, piecewise linear map with the requirements

Since global dynamical noise does not enhance the medn(1/a)=1 andF(1)=3. The shifted noisy maps are contin-
residence timd@ (D), it is only addressed briefly why(D) ued in an analogous way, as illustrated in Fig)8such that
remains constant for small noise levéds As presented in all graphs intersect &(1)=3. To be comparable with Sec.

D. Global dynamical perturbations

Figs. 5a) and 8b), T(D) starts to decrease wifh, when the Ill, the number of iterations ofi—1,1] is regarded as resi-
critical noise level, for whichk* leavesl, is exceeded. For dence time of the deterministic diffusion process.
a=1.1 this happens foD=0.09 and fora=1.01 for D As expected, global dynamical noig¥ yields a decrease

=0.01. In contrast to the previous ca&ec. Ill O, the time  of the mean residence tinig D) for the deterministic diffu-
scale of the dynamics is determined only by the number oion process, which coincides with the corresponditB)
iterations a trajectory withxo=0 needs to reach,+=x*. in Sec. llI D, since by construction of the continuationFof
Becausen” =In2/Ina is independent oD, n™ starts to de- in Fig. 8@a) the distribution of injection points is homoge-
crease as soon a3 >1, which is the onset of the decrease of neous.
T(D). However, dynamical perturbations drw.,1] (and, by
If one introduces an asymmetry of the noise-inducedsymmetry, also oh—1,— «.]) yield a delay of the determin-
shifted fixed point§x* = +aD/(a—1)] by a change of the istic diffusion process as illustrated in Fig(b3 For this
slope atx=0 such thaa=a; for x<0 anda=a,,a,>a;  process, on average, the mean residence fifi2) is the
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SF R s neity of states neas, over the entire interval.

2F i 7 ] V. CONCLUSIONS

' ] Dynamical noise(dichotomous Markov noise, uniform
e ] white noise, and also Gaussian white ndi$8]) can induce

. ] a clear enhancement of the stability of an unstable fixed
g ] point, in particular for weakly unstable states, and a clear
0 g #7 E enhancement of localization in deterministic diffusion mod-

: ] els. In both cases, even the mean residence time of a typical
—1 k2 . ] trajectory near the unstable state increases with the noise
-1 0 1 2 3 level, if noise is added locally in state space, although the
' distribution of the noise events is symmetric. This stabilizing
property is caused by a combination of two fadts: Since
noise can throw a trajectory out from a subinterval, but not
back into it, the number of iterations on the entire interval
increases, if the fixed point is unstab{8) Since noise shifts

the unstable fixed point, backward iteration is possible on the
interval. By numerical and analytical investigations, param-
eters can be derived for which the stabilizing phenomenon is
optimized for a given random process.

Of course this noise-induced enhancement of stability
does not represent a true stabilization in the sense of control-
‘ , ling. Nevertheless, it is interesting to know to what extent a

0.0 0.1 0.2 03 0.4 (simple type of multiplicativedynamical noise can generate
stabilization or localization in deterministic dynamical sys-

FIG. 8. (a) Periodic continuation of the linear map in E@)  tems. On the other side, since noise is ubiquitous in natural
(full line). The dashed lines, above and below this curve, correand experimental systems, tkmeasuregtime scale of the
spond to the noisy mapsaE 1.1, D=0.08). (b) Corresponding decay of an unstable state can be essentially changed by
residence timeT(D) in [—1,1] with dynamical perturbations on random interactions of the deterministic system.

[ac,1] (full line, 10° iterations. The dashed line represents the  The presented analysis and the corresponding stabilizing
residence time of the single map, discussed in Sec. Ill C. mechanisms are not restricted to unstable fixed points, but
still hold for unstable periodic orbits of larger period in
(non)linear dynamical systems. Also, a generalization to in-
same as for the isolated map in Sec. IlIC, but with largetermittent behavior is straightforward, which is related fur-
fluctuations superposed on it. These fluctuations are naher to diffusion in Hamiltonian systems as well @isr ex-
caused by low statistics, since they are robust against tha&mple to turbulence in dissipative dynamical systefhg].
increase of the number of iteratioffsom 1¢° to 10°). More-  There, strange kinetics as trapping and flights of particles is
over, they can be understood as a consequence of an inhpresent, which can be discussed successfully within the con-
mogeneous distribution of injection points ¢r 1,1]. The cept of Levi processes.
local restriction of the perturbations, and therefore the fre- In further studies the possible influence of these results on
guent reentering of the trajectory into the unperturbed regioonductivity in general, and on thermodynamical relations,
x<a. by backward iterationas discussed in Sec. II)C should be addressed. Since unstable periodic orbits or inter-
yields an increased frequency of statesnear a., which  mittent behavior are present in many physical, chemical, or
evolves by positive perturbationisD to the cell boundary at biological systems, experimental realizations of noise-
x=1. Thus negative fluctuatiorfsninima in T(D)] are ex- induced stabilization and noise-induced localization should
pected, ifa. is mapped to injection points near=1. This  be possible.
happens for noise level3 for which thenth iterate is deter-

Xy
_

mined by F"(ac+ D) =1 and a.= 2D/(1+ a) . Forn=1, ACKNOWLEDGMENTS
one obtainsD =(1+a)/(3a+a?)=0.47 fora=1.1; analo-
gously,n=2 corresponds t®=0.29, andn=3 to D=0.2. The author would like to thank H. Kantz, W. Just, and J.

These critical noise levels fit well with the minima (D)  Yorke for stimulating and helpful discussions.
in Fig. 8b). Correspondingly, the maxima il(D) appear at

noise levels, for whichx. is mapped onto injection points APPENDIX
nearx=0 by positive perturbations. After some calculation, ) ) .
one findsD =0.36 for the first maximum iT(D). By symmetry of the linear map in Ed4), only initial

For smaller noise level§;(D) depends rather linearly on Statesxoe[0,1] are considered. The residence time for the
D, and the fluctuations disappear, since the number of iterddnperturbed map is given by
tions of the stater, on [ «,1] increases. In particular, for
D<0.16, the number of iterations is already large enough T(x,D=0)=— M (A1)
such that dynamical noise can spread the initial inhomoge- 0 Ina’
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yielding the mean noiseless residence timg ang3]

B
f T(Xo,DZO)dXO

@ BInB—alna+a—p
L1 0) B—«a (B—a)lna (A2)
For dichotomous Markov noise the residence time for negativg ¢r positive (+) perturbations is represented by
_ ) ) , In|xo* D]
T¥(x0,D)= | T(x5,D=0) 35— (xoF D))dxg=— ——, (A3)
[
which corresponds to the mean residence tim¢ @18]:
- - (B+D)In|B*D|—(a*D)Inja*D|+a—pB
T[a,ﬁ](D):<T (X01D)>[a,ﬁ]:_ (B—a)na . (A4)
For uniform noise, the residence time for negative) (or positive (+) perturbations is given by
- , O (xo— (Xxg—D))B(xo—Xp) , | (D —Xg)In|D —Xo| + XgIn Xo— D
T (xO,D)—jIT(xo,D—O) D dxj=— Diha , (A5)
O (X5 X0) O (Xg+D—x{) (D+Xg)In|D + Xxg| = Xgln xo—D
+ — ’ — |
T7(Xg,D) ﬁT(xO,D 0) D X5 Dina , (AB6)
which leads to the corresponding mean residence timengB]
_ _ +B2n BF a?In a¥(B+D)3n|B=D|+(a+D)3n|a=D|-3D(B—a)
T[a,ﬁ](D)_<T (XO!D)>[01,,B]__ ZD(B_Q’)lna . (A7)
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